Logo du site
École Doctorale | Environnement et société
Attualità
École Doctorale  |
Attualità

Soutenance de thèse Bastien POGGI (12 décembre 2014)

Discipline et Mention: Informatique


Développement de concepts et outils d’aide à la décision pour l’optimisation via simulation : Intégration des métaheuristiques au formalisme DEVS

Résumé vulgarisé

Nous vivons dans un monde où le besoin d’efficacité s’impose de plus en plus. Ce besoin s’exprime dans différents domaines, allant de l’industrie à la médecine en passant par la surveillance environnementale. Engendrées par cette demande, de nombreuses méthodes d’optimisation « modernes » également appelées « métaheuristiques » sont apparues ces quarante dernières années. Ces méthodes se basent sur des raisonnements probabilistes et aléatoires et permettent la résolution de problèmes pour lesquels les méthodes d’optimisation « classiques » également appelées « méthodes déterministes » ne permettent pas l’obtention de résultats dans des temps raisonnables. Victimes du succès de ces méthodes, leurs concepteurs doivent aujourd’hui plus que jamais répondre à de nombreuses problématiques qui restent en suspens : « Comment évaluer de manière fiable et rapide les solutions proposées ? », « Quelle(s) méthode(s) choisir pour le problème étudié ? », « Comment paramétrer la méthode utilisée ? », « Comment utiliser une même méthode sur différents problème sans avoir à la modifier ? ».
Pour répondre à ces différentes questions, nous avons développé un ensemble de concepts et outils. Ceux-ci ont été réalisés dans le cadre de la modélisation et la simulation de systèmes à évènements discrets avec le formalisme DEVS. Ce choix a été motivé par deux objectifs : permettre l’optimisation temporelle et spatiale de modèles DEVS existants et améliorer les performances du processus d’optimisation (qualité des solutions proposées, temps de calcul). Pour cela, notre méthode propose l’utilisation des métaheuristiques pour générer différentes combinaisons de paramètres qui sont envoyés sur les entrées du modèle à optimiser et qui génère à leur tour des résultats qui sont renvoyés à la méthode d’optimisation en vue d’être interpréter et ainsi proposer de meilleures solutions. Pour réaliser ce couplage entre optimisation et simulation, nous proposons l’intégration des méthodes d’optimisation sous la forme de modèles simulables et facilement interconnectables. Notre intégration se concentre donc sur la cohérence des échanges entre les modèles dédiés à l’optimisation et les modèles dédiés à la représentation du problème. Elle permet également l’arrêt anticipé de certaines simulations inutiles afin de réduire au maximum la durée de l’optimisation. La représentation des méthodes d’optimisation sous formes de modèles simulables apporte également un élément de réponse dans le choix et le paramétrage des algorithmes. Grâce à l’usage de la simulation, différents algorithmes et paramètres peuvent être utilisés pour un même processus d’optimisation. Ces changements sont également influencés par les résultats observés et permettent une adaptation automatique de l’optimisation aux spécificités connues et/ou cachées du problème étudié ainsi qu’à ces différentes étapes de résolution.
 

En savoir plus

DAVID MOUNGAR | Mise à jour le 20/11/2014